
B.Sc. 2nd Semester, Paper-CC3(Java)

INHERITENCE IN JAVA

To inherit a class, you simply incorporate the definition of one class into another by using

the extends keyword. To see how, let’s begin with a short example. The following program

creates a superclass called A and a subclass called B. Notice how the keyword extends is

used to create a subclass of A.

// A simple example of inheritance.

// Create a superclass.

class A {

int i, j;

void showij() {

System.out.println("i and j: " + i + " " + j);

}

}

// Create a subclass by extending class A.

class B extends A {

int k;

void showk() {

System.out.println("k: " + k);

}

void sum() {

System.out.println("i+j+k: " + (i+j+k));

}

}

class SimpleInheritance {

public static void main(String args[]) {

A superOb = new A();

B subOb = new B();

// The superclass may be used by itself.

superOb.i = 10;

superOb.j = 20;

System.out.println("Contents of superOb: ");

superOb.showij();

System.out.println();

/* The subclass has access to all public members of

its superclass. */

subOb.i = 7;

subOb.j = 8;

subOb.k = 9;

System.out.println("Contents of subOb: ");

subOb.showij();

subOb.showk();

System.out.println();

System.out.println("Sum of i, j and k in subOb:");

subOb.sum();

}

}

B.Sc. 2nd Semester, Paper-CC3(Java)

The output from this program is shown here:
Contents of superOb:

i and j: 10 20

Contents of subOb:

i and j: 7 8

k: 9

Sum of i, j and k in subOb:

i+j+k: 24

Member Access and Inheritance

Although a subclass includes all of the members of its superclass, it cannot access those

members of the superclass that have been declared as private. For example, consider the

following simple class hierarchy:

/* In a class hierarchy, private members remain

private to their class.

This program contains an error and will not

compile.

*/

// Create a superclass.

class A {

int i; // public by default

private int j; // private to A

void setij(int x, int y) {

i = x;

j = y;

}

}

// A's j is not accessible here.

class B extends A {

int total;

void sum() {

total = i + j; // ERROR, j is not accessible here

}

}

class Access {

public static void main(String args[]) {

B subOb = new B();

subOb.setij(10, 12);

subOb.sum();

System.out.println("Total is " + subOb.total);

}

}

This program will not compile because the reference to j inside the sum() method of B

causes an access violation. Since j is declared as private, it is only accessible by other members

of its own class. Subclasses have no access to it.

B.Sc. 2nd Semester, Paper-CC3(Java)

Using super to Call Superclass Constructors

A subclass can call a constructor defined by its superclass by use of the following form of

super:

super(arg-list);

Here, arg-list specifies any arguments needed by the constructor in the superclass. super()

must always be the first statement executed inside a subclass’ constructor.

Another Example which uses super()

// A complete implementation of BoxWeight.

class Box {

private double width;

private double height;

private double depth;

// construct clone of an object

Box(Box ob) { // pass object to constructor

width = ob.width;

height = ob.height;

depth = ob.depth;

}

// constructor used when all dimensions specified

Box(double w, double h, double d) {

width = w;

height = h;

depth = d;

}

// constructor used when no dimensions specified

Box() {

width = -1; // use -1 to indicate

height = -1; // an uninitialized

depth = -1; // box

}

// constructor used when cube is created

Box(double len) {

width = height = depth = len;

}

// compute and return volume

double volume() {

return width * height * depth;

}

}

// BoxWeight now fully implements all constructors.

class BoxWeight extends Box {

double weight; // weight of box

// construct clone of an object

BoxWeight(BoxWeight ob) { // pass object to constructor

super(ob);

weight = ob.weight;

}

// constructor when all parameters are specified

BoxWeight(double w, double h, double d, double m) {

B.Sc. 2nd Semester, Paper-CC3(Java)

super(w, h, d); // call superclass constructor

weight = m;

}

// default constructor

BoxWeight() {

super();

weight = -1;

}

// constructor used when cube is created

BoxWeight(double len, double m) {

super(len);

weight = m;

}

}

class DemoSuper {

public static void main(String args[]) {

BoxWeight mybox1 = new BoxWeight(10, 20, 15, 34.3);

BoxWeight mybox2 = new BoxWeight(2, 3, 4, 0.076);

BoxWeight mybox3 = new BoxWeight(); // default

BoxWeight mycube = new BoxWeight(3, 2);

BoxWeight myclone = new BoxWeight(mybox1);

double vol;

vol = mybox1.volume();

System.out.println("Volume of mybox1 is " + vol);

System.out.println("Weight of mybox1 is "+mybox1.weight);

System.out.println();

vol = mybox2.volume();

System.out.println("Volume of mybox2 is " + vol);

System.out.println("Weight of mybox2 is "+mybox2.weight);

System.out.println();

vol = mybox3.volume();

System.out.println("Volume of mybox3 is " + vol);

System.out.println("Weight of mybox3 is "+mybox3.weight);

System.out.println();

vol = myclone.volume();

System.out.println("Volume of myclone is " + vol);

System.out.println("Weight of mycloneis"+myclone.weight);

System.out.println();

vol = mycube.volume();

System.out.println("Volume of mycube is " + vol);

System.out.println("Weight of mycube is "+mycube.weight);

System.out.println();

}

}

This program generates the following output:

Volume of mybox1 is 3000.0

Weight of mybox1 is 34.3

Volume of mybox2 is 24.0

Weight of mybox2 is 0.076

Volume of mybox3 is -1.0

Weight of mybox3 is -1.0

Volume of myclone is 3000.0

Weight of myclone is 34.3

B.Sc. 2nd Semester, Paper-CC3(Java)

Volume of mycube is 27.0

Weight of mycube is 2.0

When Constructors Are Called

When a class hierarchy is created, in what order are the constructors for the classes that

make up the hierarchy called? For example, given a subclass called B and a superclass called

A, is A’s constructor called before B’s, or vice versa? The answer is that in a class hierarchy,

constructors are called in order of derivation, from superclass to subclass. Further, since

super() must be the first statement executed in a subclass’ constructor, this order is the same

whether or not super() is used. If super() is not used, then the default or parameter less

constructor of each superclass will be executed. The following program illustrates when

constructors are executed:

// Demonstrate when constructors are called.

// Create a super class.

class A {

A() {

System.out.println("Inside A's constructor.");

}

}

// Create a subclass by extending class A.

class B extends A {

B() {

System.out.println("Inside B's constructor.");

}

}

// Create another subclass by extending B.

class C extends B {

C() {

System.out.println("Inside C's constructor.");

}

}

class CallingCons {

public static void main(String args[]) {

C c = new C();

}

}

The output from this program is shown here:
Inside A’s constructor

Inside B’s constructor

Inside C’s constructor

Method Overriding
In a class hierarchy, when a method in a subclass has the same name and type signature as

a method in its superclass, then the method in the subclass is said to override the method in

the superclass. When an overridden method is called from within a subclass, it will always

refer to the version of that method defined by the subclass. The version of the method

defined

B.Sc. 2nd Semester, Paper-CC3(Java)

by the superclass will be hidden. Consider the following:

// Method overriding.

class A {

int i, j;

A(int a, int b) {

i = a;

j = b;

}

// display i and j

void show() {

System.out.println("i and j: " + i + " " + j);

}

}

class B extends A {

int k;

B(int a, int b, int c) {

super(a, b);

k = c;

}

// display k – this overrides show() in A

void show() {

System.out.println("k: " + k);

}

}

class Override {

public static void main(String args[]) {

B subOb = new B(1, 2, 3);

subOb.show(); // this calls show() in B

}

}

The output produced by this program is shown here:
k: 3

Dynamic Method Dispatch

While the examples in the preceding section demonstrate the mechanics of method

overriding, they do not show its power. Indeed, if there were nothing more to method

overriding than a name space convention, then it would be, at best, an interesting curiosity,

but of little real value. However, this is not the case. Method overriding forms the basis for

one of Java’s most powerful concepts: dynamic method dispatch. Dynamic method dispatch is

the mechanism by which a call to an overridden method is resolved at run time, rather than

compile time.

Dynamic method dispatch is important because this is how Java implements run-time

polymorphism.

Here is an example that illustrates dynamic method dispatch:

B.Sc. 2nd Semester, Paper-CC3(Java)

// Dynamic Method Dispatch

class A {

void callme() {

System.out.println("Inside A's callme method");

}

}

class B extends A {

// override callme()

void callme() {

System.out.println("Inside B's callme method");

}

}

class C extends A {

// override callme()

void callme() {

System.out.println("Inside C's callme method");

}

}

class Dispatch {

public static void main(String args[]) {

A a = new A(); // object of type A

B b = new B(); // object of type B

C c = new C(); // object of type C

A r; // obtain a reference of type A

r = a; // r refers to an A object

r.callme(); // calls A's version of callme

r = b; // r refers to a B object

r.callme(); // calls B's version of callme

r = c; // r refers to a C object

r.callme(); // calls C's version of callme

}

}

The output from the program is shown here:
Inside A’s callme method

Inside B’s callme method

Inside C’s callme method

Abstract Class & Methods

There are situations in which you will want to define a superclass that declares the structure

of a given abstraction without providing a complete implementation of every method. That

is, sometimes you will want to create a superclass that only defines a generalized form that

will be shared by all of its subclasses, leaving it to each subclass to fill in the details. Such a

class determines the nature of the methods that the subclasses must implement.

// A Simple demonstration of abstract.

abstract class A {

abstract void callme();

// concrete methods are still allowed in abstract classes

void callmetoo() {

System.out.println("This is a concrete method.");

}

}

B.Sc. 2nd Semester, Paper-CC3(Java)

class B extends A {

void callme() {

System.out.println("B's implementation of callme.");

}

}

class AbstractDemo {

public static void main(String args[]) {

B b = new B();

b.callme();

b.callmetoo();

}

}

Using final to Prevent Overriding

class A {

final void meth() {

System.out.println("This is a final method.");

}

}

class B extends A {

void meth() { // ERROR! Can't override.

System.out.println("Illegal!");

}

}

Because meth() is declared as final, it cannot be overridden in B. If you attempt to do

so, a compile-time error will result.

Using final to Prevent Inheritance

final class A {

// ...

}

// The following class is illegal.

class B extends A { // ERROR! Can't subclass A

// ...

}

