2018

2nd Semester

CHEMISTRY

PAPER-C3T

(Honours)

Full Marks: 40

Time: 2 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

Group-A

1. Answer any five questions:

5×2

(a) SnCl₂ is reducing while PbCl₂ is neither recucing nor oxidising. — Explain.

- (b) Show that de Broglie's hypothesis applied to an electron moving in a circular orbit leads to Bohr's Postulate of quantisation of angular momentum.
- (c) Find out the pH of 10^{-8} M HCl solution.
- (d) From the following Latimer diagram, Calculate the reduction potential of ${\rm ClO_4}^-$ HClO

$${\rm ClO_4}^{-} \, {}^{\underline{+1.20}} \, \, {\rm ClO_3}^{-} \, {}^{\underline{+1.18}} \, \, {\rm ClO_2}^{-} \, {}^{\underline{+1.70}} \, \, {\rm HClO} \, \, {}^{\underline{+1.63}} \, \, {\rm Cl_2} \, {}^{\underline{+1.36}} \, \, {\rm Cl}^{-}$$

- (e) Me_3P acts as a stronger base than Me_3N in their reaction with B_2H_6 Explain.
- (f) Calculate the screening constant (σ) for the 3d electron of iron (26).
- (g) The kinetic energy of an electron is $5.76 \times 10^{-15} \text{J}$. Calculate the wavelength associated with the electron (Given mass of an electron = $9.1 \times 10^{-31} \text{ kg}$; h = $6.626 \times 10^{-34} \text{ JS}$).

(h) State the role of H_3PO_4 in the estimation of iron by $Cr_2O_7^{2-}$ in presence of diphenyl amine indicator.

Group-B

Answer any four questions.

4×5

- (a) For the hydrogen spectrum show that Lyman series occurs between 912 Å and 1216 Å and Balmer series occurs between 3647 Å and 6564 Å.
 (R = 1.0968 × 10⁷ m⁻¹)
 - (b) Comment on the relative ionic radii of O^{2-} , F^- and Na^+ .
- 3. (a) Draw a Frost Diagram for Hg in acid solution from the given Latimer Diagram

$$Hg^{2+} \xrightarrow{0.911v} Hg_2^{2+} \xrightarrow{0.796v} Hg$$

comment on the tendency of any of the species to undergo disproportionation.

- (b) What is acidity function? How does it behave in dilute aqueous solution? (2+1)+2
- 4. (a) Calculate the eletronegativity of chlorine in Mulliken's scale and hence find out the electronegativity of the same element in Pauling's Scale.
 (Given electron affinity of Cl = 4.0 ev per atom ; Ionisation energy of Cl = 13.0 ev per atom)
 - (b) The solubility of a sparingly soluble salt in water increases in presence of added salt without common ion — Explain.
 3+2
- 5. (a) What are Eigen functions? What are their characteristics?
 - (b) Arrange BF₃, BCl₃, BBr₃ and BI₃ in order of their Lewis acidity with justification. 3+2
- **6.** (a) The equilibrium constant of the disportionation reaction $2Cu^{+1}$ (aq.) \rightleftharpoons Cu + Cu^{+2} (aq.) at 298 K is 1.66×10^6 M⁻¹. If the standard reduction potential

- of Cu⁺²/Cu system is 0.337 volt, Calculate the standard reduction potential of Cu⁺¹/Cu system.
 - (b) Deduce ground state term symbol for atom having atomic number 22.
- 7. (a) How pH of an aqueous solution of KF will be affected if solid HgO is added?
 - (b) How Cu⁺² can be estimated in presence of Fe⁺³ iodometrically?

Given that $E_{Fe^{+3}/Fe^{+2}}^0 = +0.77V$; $E_{1/2}^0 I_2 - I^- = +0.54V$.

2+3

Group-C

Answer any one question.

1×10

8. (a) What is radial distribution function? Show diagramatically the variation of radial distribution function with 'r' for the 3s, 3p and 3d orbitals in a hydrogen atom.

(Continued)

- (b) Although In and Tl occur in the same group of the periodic table, In show +3 oxidation state in most of its compounds, however, Tl is +1. Explain.
- (c) Draw the acid-base neutralisation curve for
 - (i) Strong acid by strong base
 - (ii) Weak acid by weak base.
 - (d) H_3BO_3 is a very weak acid (pk_a = 9.2), but in presence of any cis 1, 2 diol it behaves as strong acid. Explain.

(1+3)+2+2+2

- 9. (a) What is quantum mechanical interpretation of an orbital?
 - (b) $CaO + P_4O_{10} \xrightarrow{\Delta}$? Predict the product and hence explain the reaction by Lux-Flood concept.
- (c) Calculate the first ionization energy of oxygen using Slater's rule.

(d) Consider two redox couples as follows:

$$Ox_1 + 2e \rightleftharpoons Red_1 (E^0 = E_1^0)$$

$$Ox_2 + 2e \rightleftharpoons Red_2 (E^0 = E_2^0)$$

What should be the minimum difference between E,0 and E₂⁰ in order to have 90% complete reaction between the two systems at equilibrium at 25°C?

Ionisation energy of nitrogen is higher than that of oxygen—Explain. 1+2+3+2+2